COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS MARK SCHEME GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response question

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$	correct answer only
ecf	$=\quad$ error carried forward	
bod	$=\quad$ benefit of doubt	

bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8.	(a)			$\begin{align*} A_{r}= & \frac{(39 \times 93.26)+(40 \times 0.0117)+(41 \times 6.730)}{100} \tag{1}\\ & =39.1 \quad(1) \\ & \text { (answer must be given to } 3 \text { sig figs) } \end{align*}$		2		2	2	
	(b)	(i)	atomised / turned into a gas (1) (atoms) bombarded by electrons / electron gun (1)	2			2			
		(ii)	passed through magnetic field / electromagnet (1) (potassium) particles of different masses are deflected by different amounts (1)	2			2			
	(c)	(i)	proton captures an electron (from inner orbital) forming a neutron (1) atomic number decreases to 18 which is that of argon (mass number remains unchanged) (1)	1	1		2			
		(ii)	3.75×10^{9} years		1		1	1		
	(d)		${ }^{63} \mathrm{Ni} \quad$ no mark for selection without reasoning must be a β-emitter as γ-rays pass easily through thin foil (1) must have a long half-life (1)			2	2			
			Question 9 total	5	4	2	11	3	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9.	(a)	(i)		all ionisation energies showing gradual increase and one large jump (1) large jump occurs after 8 electrons (1)		1	1	2		
		(ii)	eighth and ninth electrons come from different shells (1) ninth electron is much closer to nucleus / has less or no shielding / has greater effective nuclear charge (1)	2			2			
	(b)	(i)	ionisation energy of argon is much higher than that of xenon (1) because the outer electron is closer to nucleus / has less shielding / has greater effective nuclear charge (1)	2			2			
		(ii)	 must be attempt to show 3D structure ignore charge		1		1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(a)			concentration of hydrogen ions / $\left[\mathrm{H}^{+}\right]$would increase (1) as an increase in the concentration of reactants moves the position of equilibrium to the right (1)	1		1	2		
	(b)		limestone required, problems associated with quarrying (1) carbon dioxide produced, contributes to global warming (1)			2	2			
	(c)	(i)	$2640 \mathrm{dm}^{3}$		1		1	1	1	
		(ii)	$\begin{align*} & M_{\mathrm{r}} \mathrm{BaSO}_{4}=233.1 \\ & \frac{0.0047}{233.1}=2.02 \times 10^{-5} \tag{1} \end{align*}$ ecf possible		2		2		2	
			Question 13 total	1	3	3	7	1	3	

Question				Marking details	Marks available					
					A01	AO2	AO3	Total	Maths	Prac
13.	(a)			Indicative content - choice of two appropriate soluble reagents e.g. calcium nitrate and sodium carbonate - dissolve solids in water / use aqueous solutions - mix solutions - filter, wash (with water) and dry precipitate - $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$ 5-6 marks: Each point included in the correct order; correct ionic equation. The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks: A calcium salt and a carbonate named; reference to solutions and mixing; some attempt at ionic equation with correct formula for CaCO_{3}. The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound. 1-2 marks: Minimum of two from the following included in some form of description - calcium salt, carbonate, dissolve/solution, mix, filter, precipitate. The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks: The candidate does not make any attempt or give an answer worthy of credit.	3	2	1	6		6

© WJEC CBAC Ltd.

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14.	(a)	(i)		each oxygen atom is covalently bonded to two hydrogen atoms (1) hydrogen bonds between oxygen in one molecule and hydrogen in another (1) hexagonal arrangement of water molecules (1) full credit could be gained from a correctly drawn and well labelled diagram	3			3		
		(ii)	delocalised electrons in graphite can move to carry a current ice has no delocalised electrons (1)	2			2			
	(b)		van der Waals forces between molecules of iodine and covalent bonds between atoms in graphite (1) van der Waals forces are much weaker than covalent bonds	2			2			
			Question 15 total	7	0	0	7	0	0	

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	4	6	0	10	5	0
8.	5	4	2	11	3	0
9.	8	4	1	13	3	3
10.	1	7	5	13	2	13
11.	0	6	1	7	3	1
12.	1	3	3	7	1	3
13.	3	5	4	12	4	12
14.	7	0	0	7	0	0
Totals	29	35	16	80	21	32

